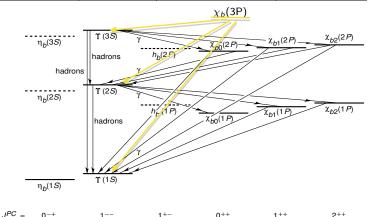
Measurement of the $\Upsilon({\rm nS})$ cross sections in pp collisions at $\sqrt{s}=7~{\rm TeV}$

Yu Zheng

Department of Physics Purdue University

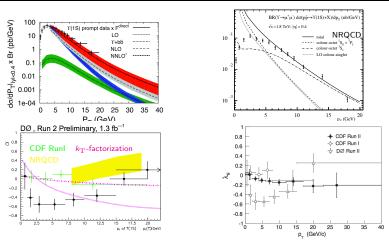
Fermilab RA Seminar


December 17, 2012

Bottomonium Production

Table: Stages in the hadroproduction of $\Upsilon(nS)$ resonances.

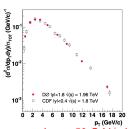
1st step	2nd step	3rd step	production type
	$bar{b} o \Upsilon(nS)$	_	prompt, direct
hoar p o bar b+X	$bar{b} ightarrow \chi_b$	$\chi_b \to \Upsilon(\mathrm{nS}) + \gamma$	prompt, indirect
	$bar{b} ightarrow \Upsilon(\mathrm{n'S})$	$\Upsilon(\mathrm{n'S}) \to \Upsilon(\mathrm{nS}) + X$	prompt, indirect

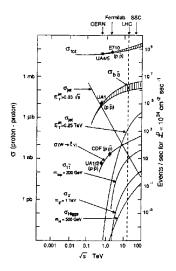


0-+

0++

1++

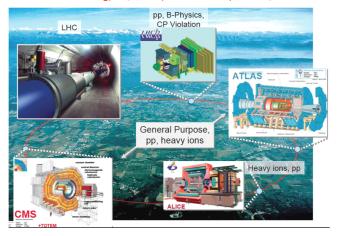

Previous Measurements

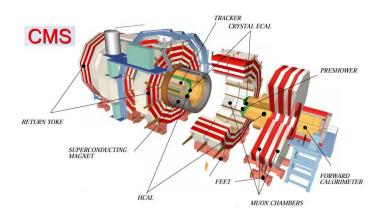


- ▶ No theoretical model has simultaneously explained experimental measurements of both production cross section and polarization.
- ► The polarization measurements from D0 and CDF do not agree with each other.

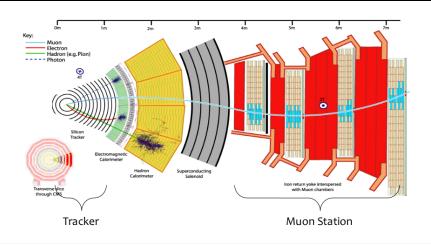
Study Upsilons at the Large Hadron Collider (LHC)

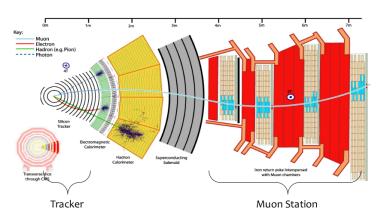
- ► LHC provides:
 - ▶ New energy scale \rightarrow Large $\sigma_{b\bar{b}}$
 - ▶ Large p_T reach can help discriminate between theoretical models
- CMS provides:
 - ▶ excellent dimuon mass resolution to separate the \(\Omega(nS)\) states




first extension to 50 GeV/c in $p_{\rm T}$ and 2.4 in |y|

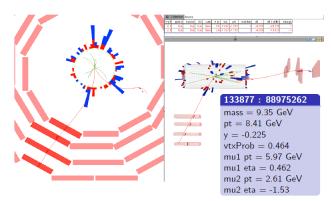
The LHC


The first collisions at an energy of 3.5 TeV per beam took place on 30th March 2010.


The CMS Detector

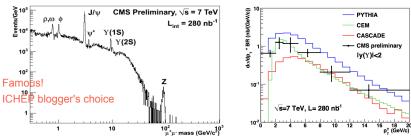
Muon Reconstruction

Muon Reconstruction



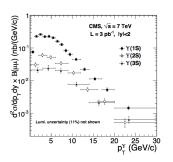
Low p_T muons might not transverse more than one instrumented muon layer because of the B-field (mid-rapidity) or material thickness (forward).

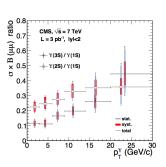
Tracker muons were developed to reconstruct muons down to very low momenta, where for identification purposes it is enough to traverse only 1 instrumented muon layer.


Evolution of the Analysis

- ▶ Monte Carlo Feasibility Study in 2008. First analysis note came out in 2009, CMS AN-2009/118
- ► Early 2010, the first Υ candidate was detected and was shown for the first time to the public by Yu in the International Workshop on Heavy Quarkonium 2010.

Evolution of the Analysis

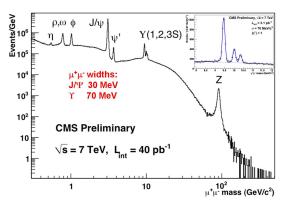

▶ July 2010, the first Υ cross section measurement result was shown to public at ICHEP. (280 nb^{-1})



Yu's contribution: data skimming; event selection cuts; efficiency measurements in data and MC

Evolution of the Analysis

- ightharpoonup Analysis using 3 ${
 m pb}^{-1}$ data collected in 2010 was published in PRD
- ► The first CMS result published in PRD
- ▶ The first $\Upsilon(nS)$ measurement at the LHC
 - ▶ Yu's contributions for the first publication were similar to the 280/nb analysis

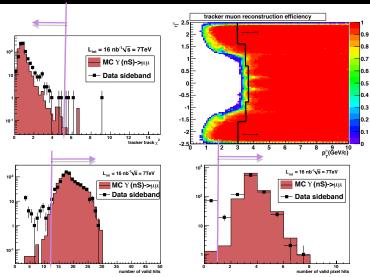

- Since 2011, we started to extend this measurement with a larger $(\times 10)$ dataset.
 - Yu is in charge of the full analysis.

Outline

- Datasets and Selection
- ► Measurement Methodology
- ► Analysis Ingredients
- ► Results, fiducial and acceptance-corrected cross section
- ► Discussions and Comparisons

Datasets

▶ data collected in 2010, the first 3 pb⁻¹ was not included: /MuOnia/Run2010B-Nov4ReReco_v1/RECO 36/pb



Trigger (Online Selection)

The CMS trigger system performs the online event selection in two steps:

- ▶ L1:
 - hardware-based, fast and automatic, look for simple signs of interesting physics
 - uses only coarsely segmented data from all the three muon systems
- ► HLT:
 - software-based, is capable of complex calculations
 - two levels:
 - L2: takes L1 candidates as seeds to perform a stand alone reconstruction
 - L3: takes L2 candidates as seeds and adds information from tracker
- ► Trigger used in this analysis:
 - ▶ HLT_DoubleMu0 (run 146428 to 147116): requires the detection of two muons without an explicit p_T^{μ} requirement.
 - ► HLT_DoubleMu0_Quarkonium_v1 (since run 147196): HLT_DoubleMu0 + dimuon with opposite charge, $1.5 < M_{uu} < 14.5$

Offline Selection Cuts

Choice of criteria: Signal MC, background from data sidebands, Maximizing $S/\sqrt{(S+B)}$

Offline Selection

Di-Muon:

- opposite charge
- vertex chi2 probability > 0.001

$$|y| < 2.4 \ (y = \frac{1}{2} ln(\frac{E + p_z c}{E - p_z c}))$$

ightharpoonup dz < 2.0 (The longitudinal separation between the two muons along the beam axis)

Each Muon:

- Fiducial Cuts: $p_T > 3.75 GeV/c$ when $|\eta| < 0.8$, $p_T > 3.5 GeV/c$ when $0.8 < |\eta| < 1.6$, $p_T > 3.0 GeV/c$ when $1.6 < |\eta| < 2.4$ ($\eta = -ln[tan(\frac{\theta}{2})]$)
- is tracker muon
- track quality cuts:
 - innerTrack.numberOfValidHits >11
 - ▶ innerTrack.hitPattern.pixelLayersWithMeasurement > 0
 - ► innerTrack.normalizedChi2 < 5
- impact parameter cuts:
 - ▶ innerTrack.|dz| < 25 (longitudinal)
 - ▶ dB < 0.2 (transverse)

If multiple candidates are found, choose the one with largest vertex chi2 probability.

Outline

- Datasets and Selection
- Measurement Methodology
- Analysis Ingredients
- ► Results, fiducial and acceptance-corrected cross section
- Discussions and Comparisons

Cross Section Measurement

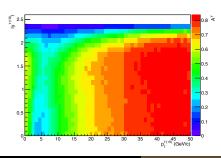
The $\Upsilon(nS)$ cross sections are measured and will be presented in the following ways:

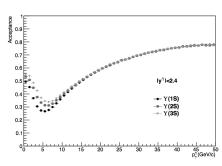
- Fiducial cross section
 - defined within the fiducial region
 - not corrected for acceptance, thus not affected by polarization
- Cross section
 - acceptance corrected
 - polarization effect not included in systematics, but quote different cross sections for discrete polarization values
- Cross section utilizing polarization values measured with CMS
 - polarization treated as systematic
 - limited to the polarization measurement fiducial region

The Ingredients to Determine the Cross Section

$$\frac{d\sigma\left(pp \to \Upsilon(\mathrm{nS})X\right)}{dp_{T}dy} \,\mathcal{B}\left(\Upsilon(\mathrm{nS}) \to \mu^{+}\mu^{-}\right) = \frac{N_{\Upsilon(\mathrm{nS})}^{\mathrm{fit}}(p_{T}; \mathcal{A}, \epsilon_{\mathrm{track}}, \epsilon_{\mathrm{id}}, \epsilon_{\mathrm{trig}})}{\mathcal{L} \cdot \Delta p_{T} \cdot \Delta y}, \ (1)$$

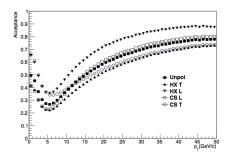
- \blacktriangleright $\mathcal{B}(\Upsilon(nS) \to \mu^+\mu^-)$: Branching fraction of $\Upsilon(nS) \to \mu^+\mu^-$
- ▶ A: Geometric acceptance, obtained in Monte Carlo (NOT USED IN PRODUCING FIDUCIAL CROSS SECTION RESULTS)
- - $ightharpoonup \epsilon_{
 m track}$: Tracking efficiency, determined with a track-embedding technique
 - $ightharpoonup \epsilon_{id}, \epsilon_{trig}$: Muon identification and trigger efficiency, determined with the tag-and-probe technique
- $N_{\Upsilon(nS)}$: The $\Upsilon(nS)$ yields, extracted via an extended unbinned maximum likelihood fit
- \triangleright \mathcal{L} : The integrated luminosity of the dataset, $35.8 \pm 1.4 \ pb^{-1}$


Outline


- Datasets and Selection
- ► Measurement Methodology
- Analysis Ingredients
 - Acceptance
 - Efficiencies
 - Yield
- ► Results, fiducial and acceptance-corrected cross section
- ► Discussions and Comparisons

Acceptance (A)

$$\mathcal{A}\left(p_{T}^{\Upsilon},y^{\Upsilon}\right) = \frac{N^{\text{reco}}\left(p_{T}^{\Upsilon},y^{\Upsilon}\middle|\operatorname{SiTRK track pair satisfies fiducial cuts}\right)}{N^{\text{gen}}\left(p_{T}^{\Upsilon},y^{\Upsilon}\right)},\tag{2}$$


- Geometric and kinematic
- ▶ High-Statistics MC Υ (nS) Gun samples, generated flat in Υp_T
- ▶ Different acceptance maps for 1S, 2S and 3S

Acceptance vs. Polarization

- Acceptance is a strong function of production polarization
- ▶ Acceptance is not used in fiducial cross section results
- ► Following the 3 pb⁻¹ analysis, for the acceptance-corrected production cross section results, quote different cross sections for discrete polarization values

HX: the helicity frame, where the polar axis coincides with the direction of the Υ momentum:

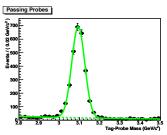
CS: the Collins-Soper frame whose axis is the average of the two beam directions in the Υ rest frame

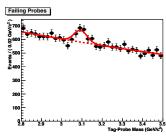
 ${\sf T}: {\sf fully \ transversely \ polarized}$

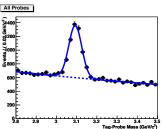
L : fully longitudinally polarized

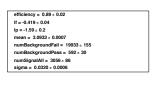
Outline

- Datasets and Selection
- ► Measurement Methodology
- Analysis Ingredients
 - Acceptance
 - Efficiencies
 - Yield
- Results, fiducial and acceptance-corrected cross section
- ► Discussions and Comparisons

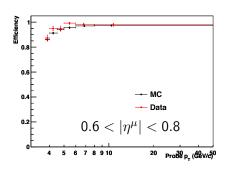

Tag and Probe Methodology for Efficiencies (ϵ)

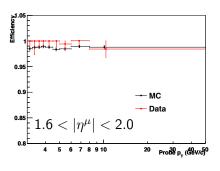

- Data driven technique, efficiencies measured with data
- Use J/Ψ resonance given the higher statistics
- ► Tag: Well-identified, good track quality, passes muon leg of Mu+track J/Ψ trigger
- Probe:
 - ► ID: Tracks with good quality
 - ► Trigger: Tracker muon
- Passing Probes:
 - ▶ ID: is Tracker muon
 - Trigger: pass desired trigger
- Tag-Probe pair:
 - ▶ 2.6 < mass < 3.5
 - $ightharpoonup \Delta R > 0.6$: remove close-by muons




Tag and Probe Example

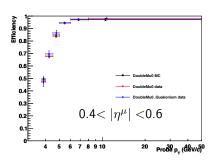
Example in one $p_{\rm T}$ and $|\eta|$ bin: Muon ID, $p_T^{\mu}(3.5,3.75)$, $\eta^{\mu}(0.8,1.2)$ There are 72 for each efficiency in the analysis.

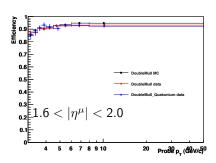




MuonID Efficiencies (ϵ_{id})

• measured in 8 η^{μ} bins and 9 p_T^{μ} bins

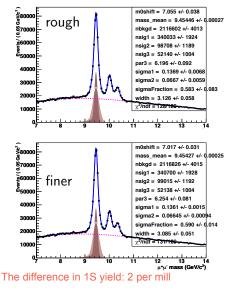



Trigger Efficiencies (ϵ_{trig})

black: DoubleMu0, Data;

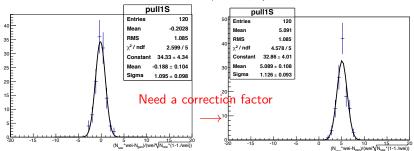
blue: DoubleMu0_Quarkonium_v1, Data;

red: DoubleMu0, MC



η Dependence of Efficiencies

- Both trigger and ID efficiencies show $|\eta|$ dependence, especially in low p_T region
- The inefficiencies at $|\eta|=0.2,1.1,1.7$ are due to the detector geometry
- The MC truth efficiencies are measured in rough (same as for data) and finer η binnings. Apply the efficiencies to the cross section measurement, we observe negligible differences.

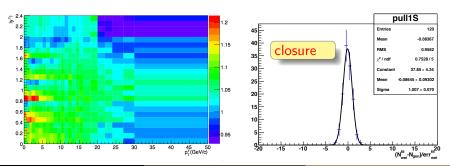


Monte Carlo Closure Test

- Divide Fall10 MC sample into 120 1pb⁻¹ samples and perform a full analysis on each sample.
- ▶ Add offline selections one by one. At each step we quantify the agreement between measurements and MC truth using the pull distribution

Acceptance, Tracking, Track Quality, MC truth $Dimuon(\Upsilon)$ efficiencies

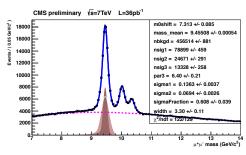
Acceptance, Tracking, Track Quality, Single Muon TnP Efficiencies Product (use MC J/Ψ sample)


- A pull less than 2 sigma away from unity
- All the ingredient inputs are correct
- A biased pull, with a shifted mean at 5.1
- The single muon TnP efficiencies product measured with MC J/Ψ sample show a bias

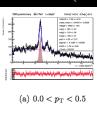
Correction Factor (ρ)

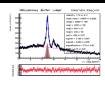
The ρ factor is defined as:

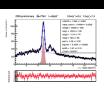
$$\epsilon(\Upsilon) = \epsilon(\mu_{J/\Psi}^1) \cdot \epsilon(\mu_{J/\Psi}^2) \cdot \rho \tag{3}$$

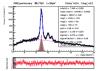

- $ightharpoonup \epsilon(\Upsilon)$: Monte Carlo Truth Matching Dimuon (Υ) Efficiency
- $ightharpoonup \epsilon(\mu^i_{J/\Psi})$: Monte Carlo Tag and Probe Single Muon Efficiency measured with J/Ψ
- A correction to the factorization hypothesis
- lacktriangle Accounts for the bias introduced by the Tag and Probe efficiency measurement with J/Ψ

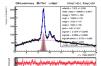
Outline

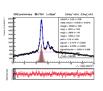

- Datasets and Selection
- ► Measurement Methodology
- Analysis Ingredients
 - Acceptance
 - Efficiencies
 - Yield
- ► Results, fiducial and acceptance-corrected cross section
- ► Discussions and Comparisons


Mass Fits($N_{\Upsilon(nS)}$)

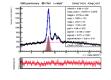



- ▶ Signal Pdf: Double Crystal Ball (Gaussian core portion and a power-law low-end tail) for high statistics p_T bins and Single Crystal Ball for rather low statistics p_T bins (typically with 1S yield fewer than 1000)
- Background Pdf: error function times exponential; error function not used when exponential is enough
- Mass differences fixed to precise PDG values
- Common width parameters scaled by the mass
- Crystal Ball radiative tail parameter fixed from high stats MC

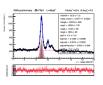

Mass Fits (low p_T bins)

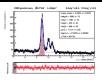


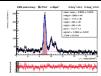
(b) $0.5 < p_{\rm T} < 1.0$



(c) $1.0 < p_T < 1.5$



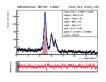


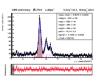

signal: double CB background: exponential and error function product

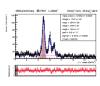
33 / 75

(h) $5.0 < p_T < 6.0$ (i) $6.0 < p_T < 7.0$ Fermilab RA Seminar

Mass Fits (high p_T bins)

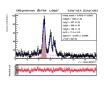





(d) $13.0 < p_T < 14.0$

(e) $14.0 < p_{\rm T} < 15.0$

(f) $15.0 < p_{\rm T} < 16.0$



(g) $16.0 < p_{\rm T} < 18.0$

(h) $18.0 < p_{\rm T} < 20.0$

(i) $20.0 < p_{\rm T} < 22.0$

(l) $30.0 < p_{\rm T} < 50.0$

signal: single CB background: exponential

Candidate Weighting

- $ightharpoonup p_T$ and η of each muon determines the reconstructability of a Υ
- incorporate acceptance and efficiency for each muon in yield extraction
- Via: per candidate weighting

$$w \equiv w_{acc} \cdot w_{track} \cdot w_{id} \cdot w_{trig} \cdot w_{misc} \cdot w_{\rho} \tag{4}$$

$$\mathbf{w}_{\mathrm{acc}} = 1/\mathbf{A}^{\Upsilon}(\rho_{\mathcal{T}}, \mathbf{y}) \tag{5}$$

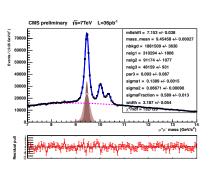
$$w_{\text{track}} = 1/\epsilon_{\text{track}}^2 \tag{6}$$

$$w_{i} = 1/[\epsilon_{i}(p_{T}^{\mu_{1}}, \eta^{\mu_{1}}) \cdot \epsilon_{i}(p_{T}^{\mu_{2}}, \eta^{\mu_{2}})]$$
 (7)

$$\mathbf{w}_{\rho} = 1/\rho^{\Upsilon}(p_{\mathcal{T}}, \mathbf{y}) \tag{8}$$

for i = id, trig

Additional selection criteria, $w_{\rm misc},$ including the efficiency of the vertex selection criteria.


Fit the mass spectrum after weighting in each p_T or |y| interval to extract the weighted yield.

Candidate Weighting (Examples)

Raw Yield

CMS preliminary Vs=7TeV L=36pb⁻¹ m0shift = 7.313 +/- 0.085 18000 mass mean = 9.45508 +/- 0.00054 16000 nbkad = 456514 +/- 881 nsig1 = 78899 +/- 459 14000 nsig2 = 24671 +/- 291 12000 nsig3 = 13328 +/- 258 10000 par3 = 6.40 +/- 0.21 sigma1 = 0.1363 +/- 0.0037 800 sigma2 = 0.0694 +/- 0.0026 600 sigmaFraction = 0.608 +/- 0.039 400 width = 3.30 +/- 0.11 /ndf = 122/129 200 μ+μ mass (GeV/c2

Weighted Yield

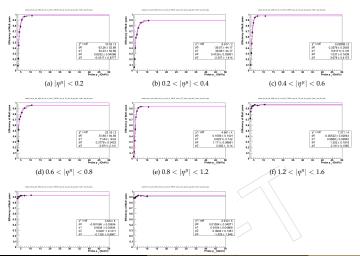
average all-eff: 0.29 acc: 0.40 trg: 0.75 muid: 0.96 trk: 1.00 rho: 1.07 average all-wei: 4.10 wacc: 2.81 wtrg: 1.43 wmuid: 1.04 wtrk: 1.00 wrho: 0.94

Outline

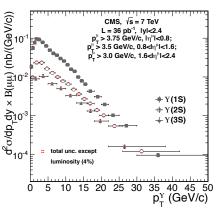
- Datasets and Selection
- ► Measurement Methodology
- ► Analysis Ingredients
- Results, fiducial and acceptance-corrected cross section
 - ► Fiducial Cross Section
 - ► Acceptance-corrected Cross Section
 - ► Results utilizing CMS polarization measurement
- Discussions and Comparisons

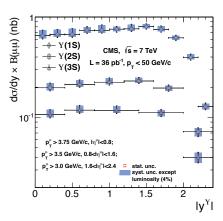
Evaluation of Systematic Uncertainties for the Fiducial Results

Efficiencies


Vary weights coherently by $\pm 1\sigma$ for each efficiency and sum in quadrature (id: 2-4%, trig: 1-6%) (dominant uncertainty)

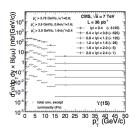
- ρ factor Repeat the measurements with unit ρ factors. (2-9%) (dominant)
- $\underline{M}_{\rm scale}$ The mismeasurement of the track momentum shifts and broadens the reconstructed peaks of dimuon resonances. Varying the correction parameters by $\pm 1\sigma$ (stat.) (0.1-1%)
- ▶ PDF
 - ► Signal: Vary one of the CB tail parameters and redo the fits. (1-2%)
 - ▶ Background: Vary the background PDF with polynomial in a restricted mass region (8,12). (1-4%)
- Luminosity (4%)

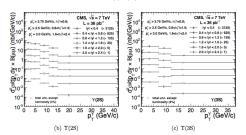

Evaluation of Systematic Uncertainties for the Fiducial Results


Bin choice of efficiencies

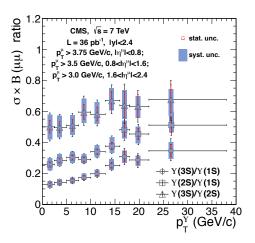
Fit the 1D efficiency as a function of p_T using a hyperbolic tangent function (1-3%)

Results: Differential Fiducial X-section vs. p_T and |y|




- ▶ The $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ p_T differential x-sections are measured in twenty-five, sixteen and nine bins respectively.
- ▶ The $\Upsilon(nS) |y|$ differential x-sections drop significantly at high |y|

Results: Differential Fiducial X-section vs p_T , in different regions


- \triangleright The p_T differential x-sections of $\Upsilon(nS)$ are measured in different |y| bins: (0,0.4), (0.4,0.8), (0.8,1.2),(1.2,1.6), (1.6,2.0), (2.0,2.4)
- Similar trends in all |y| bins

(a) Y(1S)

Ratios of Fiducial Cross Sections

 \triangleright All the ratios in the plot ascend when p_T goes up.

Results of the Fiducial Cross Section

$$\frac{d\sigma\left(pp \to \Upsilon(\mathrm{nS})X\right)}{dp_{T}dy} \mathcal{B}\left(\Upsilon(\mathrm{nS}) \to \mu^{+}\mu^{-}\right) = \frac{N_{\Upsilon(\mathrm{nS})}^{\mathrm{fit}}(p_{T}; \epsilon_{\mathrm{track}}, \epsilon_{\mathrm{id}}, \epsilon_{\mathrm{trig}})}{\mathcal{L} \cdot \Delta p_{T} \Delta y}, \quad (9)$$

Integrated over |y|<2.4, the total \Upsilon(nS) fiducial cross-section within the cuts $p_T^\mu>3.75~GeV/c$ for $|\eta|^\mu<0.8,~p_T^\mu>3.5~GeV/c$ for $0.8<|\eta|^\mu<1.6$ and $p_T^\mu>3.0~GeV/c$ for $1.6<|\eta|^\mu<2.4$ on both muons are:

$$\begin{split} &\sigma(pp\to \Upsilon(1\mathrm{S})X)\cdot \mathcal{B}(\Upsilon(1\mathrm{S})\to \mu^+\mu^-) = (3.06\pm 0.02^{+0.27}_{-0.25}\pm 0.12)\;\mathrm{nb}\,,\\ &\sigma(pp\to \Upsilon(2\mathrm{S})X)\cdot \mathcal{B}(\Upsilon(2\mathrm{S})\to \mu^+\mu^-) = (0.91\pm 0.01^{+0.08}_{-0.07}\pm 0.04)\;\mathrm{nb}\,,\\ &\sigma(pp\to \Upsilon(3\mathrm{S})X)\cdot \mathcal{B}(\Upsilon(3\mathrm{S})\to \mu^+\mu^-) = (0.49\pm 0.01^{+0.04}_{-0.04}\pm 0.02)\;\mathrm{nb}\,, \end{split}$$

mean \pm statistical \pm systematic \pm Lumi

Outline

- Datasets and Selection
- ► Measurement Methodology
- ► Analysis Ingredients
- Results, fiducial and acceptance-corrected cross section
 - ► Fiducial Cross Section
 - Acceptance-corrected Cross Section
 - ▶ Results utilizing CMS polarization measurement
- Discussions and Comparisons

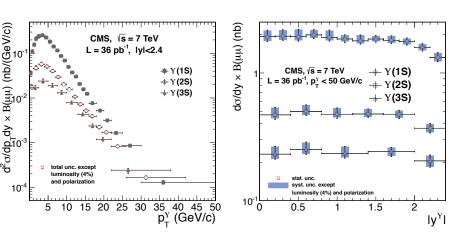
Evaluation of Systematic Uncertainties for the Acceptance-corrected Cross Section

The difference between the fiducial and the acceptance-corrected cross section are the acceptance corrections.

Besides those that have been already explained in the previous slides, the following acceptance related systematics are also included here:

- $ilde{f Vary weights}$ coherently by $\pm~1\sigma$ for acceptance (0.3-1%)
- FSR Remove events with photons from Υ and recompute the acceptance. (0.1-0.8%)
- Momentum Scale
 Acceptance is based on reconstructed p_T . Vary the p_T resolution by $\pm 10\%$ and recompute the acceptance maps. (0.1-0.2%)
- ▶ $p_{\rm T}$ spectrum

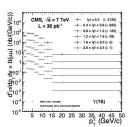
 Acceptance is measured with Υ Gun sample with a flat $p_{\rm T}$ spectrum.

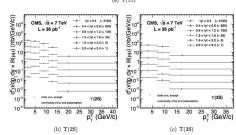

 Reweight it with the $p_{\rm T}$ spectrum from PYTHIA. (0.1-0.7%)

Systematic Uncertainties

Table: Relative values of systematic uncertainties on the $\Upsilon(nS)$ production integrated over the rapidity range $|y^{\Upsilon}| < 2.4$, times the dimuon branching fraction, in units of percent.

	$p_{\mathrm{T}} \; \mathrm{(GeV/c)}$	A	$\epsilon_{\mathrm{T\&P}}$	$\epsilon_{ ho}$	PDF	other
$\Upsilon(1S)$	0.0 - 50.0	1.0 (1.0)	4.6 (4.0)	6.8	1.8	0.4(0.3)
$\Upsilon(2S)$	0.0 - 42.0	1.1 (1.1)	5.0 (4.3)	7.4	2.6	0.4(0.4)
$\Upsilon(3S)$	0.0 - 38.0	1.2 (1.1)	4.7 (3.9)	8.0	3.8	0.6(0.5)


Results: Differential $\Upsilon(nS)$ Production X-section vs. p_T and |y|


▶ The $\Upsilon(nS) |y|$ differential x-sections decreases at large |y|, but not as significantly as in the fiducial cross section.

Results: Differential X-section vs. p_T in different |y| region

- ► The p_T differential x-sections of $\Upsilon(nS)$ are measured in different |y| bins: (0,0.4), (0.4,0.8), (0.8,1.2), (1.2,1.6), (1.6,2.0), (2.0,2.4)
- Similar trends in all |y| bins

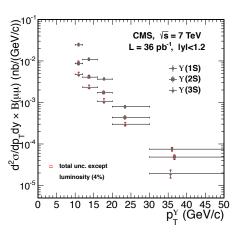
Results: Total Production Cross Section

$$\frac{d\sigma\left(\rho\rho\to\Upsilon(\mathrm{nS})X\right)}{d\rho_{T}dy}\;\mathcal{B}\left(\Upsilon(\mathrm{nS})\to\mu^{+}\mu^{-}\right)=\frac{N_{\Upsilon(\mathrm{nS})}^{\mathrm{fit}}(\rho_{T};\mathcal{A},\epsilon_{\mathrm{track}},\epsilon_{\mathrm{id}},\epsilon_{\mathrm{trig}})}{\mathcal{L}\cdot\Delta\rho_{T}\Delta y},\tag{10}$$

The $\Upsilon(nS)$ integrated production cross sections (sum of differential x-sections), for |y| < 2.4:

$$\begin{split} &\sigma(pp\to \Upsilon(1\mathrm{S})X)\cdot \mathcal{B}(\Upsilon(1\mathrm{S})\to \mu^+\mu^-) = (8.55\pm 0.05^{+0.74}_{-0.71}\pm 0.34)\;\mathrm{nb}\;,\\ &\sigma(pp\to \Upsilon(2\mathrm{S})X)\cdot \mathcal{B}(\Upsilon(2\mathrm{S})\to \mu^+\mu^-) = (2.21\pm 0.03^{+0.21}_{-0.20}\pm 0.09)\;\mathrm{nb}\;,\\ &\sigma(pp\to \Upsilon(3\mathrm{S})X)\cdot \mathcal{B}(\Upsilon(3\mathrm{S})\to \mu^+\mu^-) = (1.11\pm 0.02^{+0.12}_{-0.11}\pm 0.04)\;\mathrm{nb}\;, \end{split}$$

mean \pm statistical \pm systematic \pm Lumi

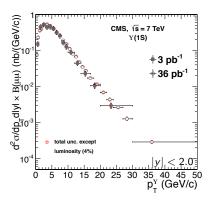

quote different cross sections for discrete polarization values:

dense annual annual annual annual annual beautiful annual													
	$p_{\rm T}~({\rm GeV/c})$	HX T	HX L	CS T	CS L	$HX\frac{1}{2}T$	$HX\frac{1}{2}L$	$CS\frac{1}{2}T$	$CS\frac{1}{2}L$	$HX\frac{1}{4}T$	$HX\frac{1}{4}L$	$CS\frac{1}{4}T$	$CS\frac{1}{4}L$
$\Upsilon(1S)$	0.0 - 50.0	+19	-24	+16	-19	+10	-11	+8	-9	+5	-5	+4	-5
$\Upsilon(2S)$	0.0 - 42.0	+14	-24	+13	-20	+5	-12	+6	-10	+3	-7	+2	-6
$\Upsilon(3S)$	0.0 - 38.0	+16	-21	+14	-17	+9	-9	+8	-7	+5	-4	+5	-3

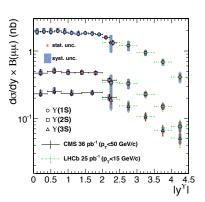
Outline

- Datasets and Selection
- ► Measurement Methodology
- ► Analysis Ingredients
- Results, fiducial and acceptance-corrected cross section
 - ► Fiducial Cross Section
 - ► Acceptance-corrected Cross Section
 - Results utilizing CMS polarization measurement
- Discussions and Comparisons

Results utilizing the polarization results from CMS

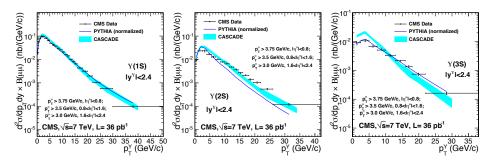

- The polarization measurement from CMS became public recently (arXiv:1209.2922)
- Measured for $10 < p_{\mathrm{T}}^{\Upsilon} < 50$ and $|y^{\Upsilon}| < 1.2$
- Acceptances are calculated using the polarization results

	σ	$\frac{\text{stat.}}{\sigma}$	$\frac{\sum_{\text{syst.}}}{\sigma}$	$\frac{\text{pol.}}{\sigma}$	$\frac{\Delta \sigma}{\sigma}$
$\Upsilon(1S)$	0.56	1.3	9 (8)	4(2)	11 (9)
$\Upsilon(2S)$	0.21	2.4	7(8)	7(3)	11 (9)
$\Upsilon(3S)$	0.13	3.2	9 (8)	7(3)	12 (9)

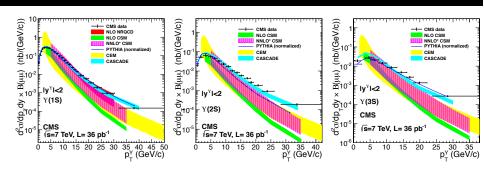

Outline

- Datasets and Selection
- ► Measurement Methodology
- ► Analysis Ingredients
- ► Results, fiducial and acceptance-corrected cross section
- Discussions and Comparisons

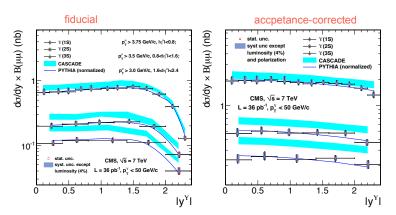
Discussion of the Results



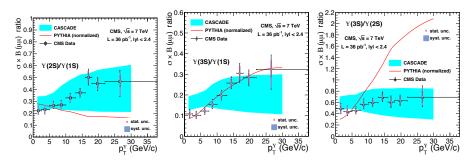
- Recompute the production x-section results for |y| < 2.0 in order to compare with previous 3 pb^{-1} results
- Show good agreement


- Compare rapidity-differential acceptance-corrected cross section with LHCb results
- Show good agreement
- Cross section decreases for high |y| values

Theory Comparison, p_T differential fiducial cross sections


▶ PYTHIA describes $\Upsilon(1S)$ and $\Upsilon(3S)$ shapes reasonably well.

Theory Comparison, p_T differential acceptance-corrected cross sections


- ightharpoonup NRQCD describes well the $\Upsilon(1S)$ measurement in higher p_{T} region.
- ▶ CASCADE describes well the $\Upsilon(1S)$ measurement in the whole region but not the $\Upsilon(2S)$ or $\Upsilon(3S)$.
- ▶ PYTHIA has been normalized, it overestimates the total cross section by a factor of 2; it can describe $\Upsilon(1S)$ and $\Upsilon(3S)$ shape but not the $\Upsilon(2S)$.

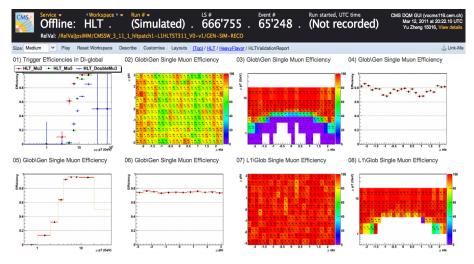
Theory Comparison, |y| differential cross sections

- \triangleright PYTHIA (normalized) describes the $\Upsilon(nS)$ shapes very well.
- ▶ CASCADE agrees with the $\Upsilon(1S)$ but predicts larger total cross sections for the 2S and 3S.

Theory Comparison, cross section ratios

- ▶ PYTHIA (normalized) cannot account for the $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(3S)/\Upsilon(2S)$ ratio due to its inability to describe the $\Upsilon(2S)$ cross section.
- ▶ The CASCADE prediction is consistent with the $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(3S)/\Upsilon(2S)$ ratios while it does not describe the $\Upsilon(3S)/\Upsilon(1S)$ ratio at low $p_{\rm T}$.

Summary


- ▶ The $\Upsilon(nS)$ cross sections with and without acceptance corrections have been measured.
- A Monte Carlo closure test has been performed to validate the analysis strategy.
- ▶ The p_T and |y| differential cross sections and the ratios of cross sections have been shown.
- ► The systematic uncertainties and effects from polarization have been estimated. The dominant systematic is from the uncertainty in the efficiencies.
- ► The results have been compared to the results from other experiments and various theoretical models.

A List of Analyses Contributed

- ► ↑ Cross Section Measurement in pp collisions at \sqrt{s} =7 TeV (36 pb⁻¹) BPH-11-001, under collaboration review
- ▶ ↑ Cross Section Measurement in pp collisions at \sqrt{s} =7 TeV (3 pb⁻¹) *Phys.Rev.D83:112004,2011*
- ► Search in leptonic channels for heavy resonances decaying to long-lived neutral particles submitted to JHEP
- ► Observation of sequential Upsilon suppression in PbPb collisions Accepted by PRL
- ► Suppression of ↑ excited states in PbPb collisions PhysRevLett.107.052302
- ► Feasibility Study of Searching for Long-Lived Parents of the Z⁰ Boson at the CMS winning poster in the 1st USLUO meeting
- ► Feasibility Study of Prompt J/Ψ Cross Section Measurement at the CMS APS talk 2009

Service Work Contributed

B-PAG trigger release validation contact

Service Work Contributed

CMS Data Analysis School, facilitator, 2010-2012

4) Upsilon Cross Section

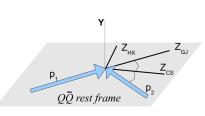
Description: On December 26 2010 CMS posted to arXiv, and submitted to PRD, the first measurement of the Upsilon(nS) differential production cross section at sort(s)= 7 TeV, based on

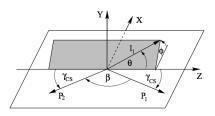
The Pre-CMSDAS Exercises and CMSDAS Exercises have been tested by:

Purdue University

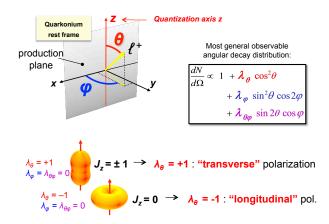
Purdue University

Fan Yang Fermilab

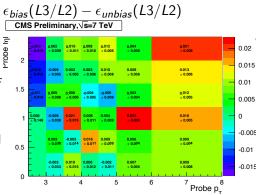

Vanderbilt University


Thank you!

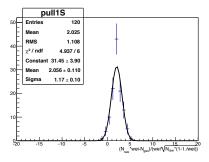
Back Up


Back Up

Polarization Frames

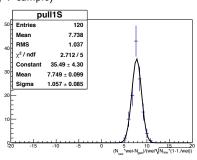


Polarization Variables


Trigger Efficiencies Bias

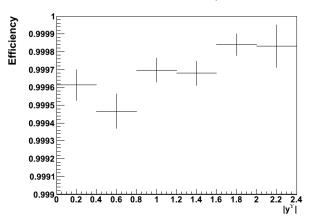
- ► A small bias on the probe sample may arise due to presence of second leg of Mu-plus-Track trigger.
- ► To estimate the bias: we made comparisons of the L3/L2 efficiency using different Tag requirements
- ► Tag:
 - match to the Mu-plus-Track trigger object: bias L3/L2 eff
 - match to the Mu5L2Mu0 trigger object: unbias L3/L2 eff
- Probe: Tracker muons that matched to L2DoubleMu0 trigger object
- Passing Probe: Probes that matched to HLT_DoubleMu0 trigger object

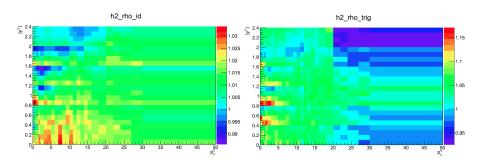
Monte Carlo Closure Test


Acceptance, Tracking, Track Quality, MC truth Single Muon Efficiencies Product (↑ sample)

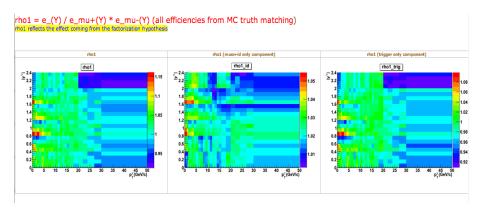
- A biased pull, with a shifted mean at 2.06
- Factorization Hypothesis

We need to introduce a correction factor.

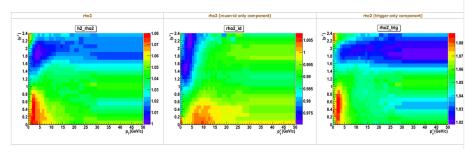

Acceptance, Tracking, Track Quality, MC truth Single Muon Efficiencies Product $(J/\Psi \text{ sample})$


- A biased pull, with a shifted mean at 7.75
- lacktriangle Bias from applying J/Ψ muon efficiencies to Υ

Other Efficiencies

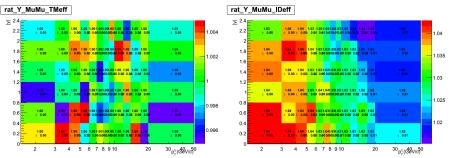

- Vertex Probability > 0.001: 0.9916+/-0.0009
- When multiple candidates are found, choose the one with highest vertex probability: 0.9991+/-0.0009
- ► Track Quality Cuts: 0.9866 +/- 0.0005

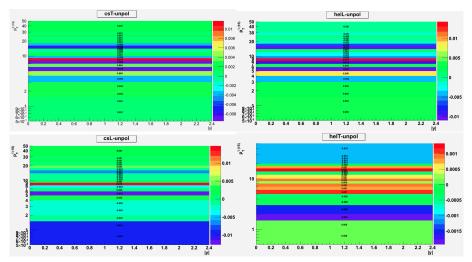
Break down the ρ factor


Break down the ρ factor

Break down the ρ factor

 $\label{eq:rho2} $$ rho2 = [e_mu+(Y)*e_mu+(Y)] / [e_mu+(J/Psi)*e_mu-(J/Psi)] $$ (e_mu(Y)$ efficiencies from MC truth matching, e_mu(J/Psi) from MC TnP) $$ (e_mu+(Y)*e_mu+(J/Psi)*e_mu+(J$

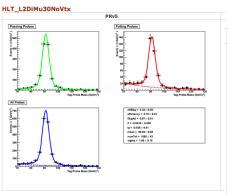

tho2 reflects the effect coming from using 3Psi samples to measure muon efficiencies for Y and the intrinsic difference between tag and probe efficiencies and mc truth efficiencies (*could separate more)

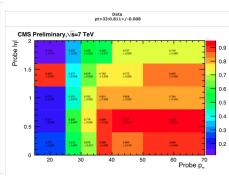

ho' factor vs. Muon Arbitration Type

$$\epsilon(\Upsilon) = \epsilon(\mu_{\Upsilon}^1) \cdot \epsilon(\mu_{\Upsilon}^2) \cdot \rho' \tag{11}$$

- $ightharpoonup \epsilon(\Upsilon)$: Monte Carlo Truth Dimuon (Υ) Efficiency
- $ightharpoonup \epsilon(\mu^i_{\Upsilon})$: Monte Carlo truth Single Muon Efficiency

ρ factor vs. Polarization




Negligible effect.

Systematics

$\Upsilon(1\mathrm{S}) \ \mathbf{y^\Upsilon} < 2.4$												
$p_{ m T}$	A	S_p	A_{p_T}	$A_{ m fsr}$	$\varepsilon_{\mathrm{muid}}$	$\varepsilon_{\mathrm{trig}}$	ε_{ρ}	$\varepsilon_{\mathrm{func}}$	$\varepsilon_{\mathrm{trk}}$	PDF_{CB}	PDF_{bkgd}	$M_{ m scale}$
0.0 - 50.0	0.8 (0.8)	0.3(0.3)	0.1	0.5	3.1(2.0)	3.4 (3.4)	6.8	1.8	0.4(0.3)	1.7	0.6	0.0 (0.0)
0.0 - 0.5	0.7(0.8)	0.0(0.1)	0.2	0.8	4.2(3.2)	5.6(4.9)	7.4	0.4	0.4(0.3)	2.0	0.7	0.1(0.1)
0.5 - 1.0	0.8 (0.8)	0.1(0.1)	0.2	0.8	3.2 (3.2)	5.3 (4.6)	8.3	0.7	0.3(0.4)	1.8	1.3	0.0(0.4)
1.0 - 1.5	0.8 (0.8)	0.3(0.2)	0.2	0.5	2.8 (3.5)	4.9 (4.7)	7.3	3.7	0.4(0.4)	2.1	0.5	0.0 (0.0)
1.5 - 2.0	0.9 (0.8)	0.3(0.3)	0.2	0.4	5.2 (2.7)	4.5 (4.5)	7.8	3.3	0.3(0.3)	1.2	2.7	0.1(0.0)
2.0 - 3.0	0.7 (0.7)	0.7(0.7)	0.2	0.7	3.4(2.4)	5.0 (8.5)	7.2	2.6	0.4(0.3)	1.7	2.5	0.0 (0.0)
3.0 - 4.0	0.8 (0.8)	0.5(0.6)	0.1	0.6	3.2 (1.9)	4.4 (3.8)	7.1	1.9	0.3 (0.4)	2.0	1.2	0.1 (0.1)
4.0 - 5.0	0.9 (0.7)	0.1(1.1)	0.0	0.8	3.0 (1.8)	3.6 (3.6)	7.5	2.6	0.4(0.6)	1.5	0.4	0.0 (0.2)
5.0 - 6.0	1.0 (0.8)	0.3(0.2)	0.0	0.3	3.0(1.7)	3.8 (7.3)	6.7	2.2	0.3(0.4)	1.3	1.8	0.2(0.2)
6.0 - 7.0	0.9 (0.9)	0.2(0.2)	0.2	0.4	2.9 (1.8)	3.6 (3.1)	6.8	1.9	0.4(0.2)	1.3	0.6	0.3(0.3)
7.0 - 8.0	0.8 (0.8)	0.1(0.1)	0.2	0.3	2.9 (1.8)	3.2 (2.8)	5.3	1.4	0.4(0.4)	1.5	0.9	0.2 (0.2)
8.0 - 9.0	1.7 (1.7)	0.0(0.0)	0.2	0.3	2.9(1.8)	2.9(2.6)	4.4	1.2	0.4(0.4)	1.4	1.0	0.0 (0.0)
9.0 - 10.0	0.7(1.0)	0.0(0.1)	0.1	0.2	2.9(2.0)	2.8(2.5)	3.9	0.1	0.4(0.4)	1.3	1.3	0.2(0.1)
10.0 - 11.0	0.7 (0.6)	0.1(0.1)	0.2	0.2	2.8 (1.9)	2.6(2.3)	5.0	0.5	0.4(0.4)	1.2	1.2	0.2(0.0)
11.0 - 12.0	0.7 (0.7)	0.1(0.1)	0.1	0.1	2.9 (2.0)	2.4(2.1)	1.8	0.5	0.4(0.4)	0.7	2.4	0.2(0.2)
12.0 - 13.0	0.6 (0.6)	0.1(0.1)	0.1	0.0	2.9 (2.1)	2.4(2.1)	5.1	0.4	0.4 (0.4)	1.2	1.1	0.6 (0.6)
13.0 - 14.0	0.6 (0.6)	0.7(0.7)	0.1	0.0	2.4(2.6)	1.7(2.5)	5.2	0.2	0.3(0.3)	1.2	0.1	0.1(1.0)
14.0 - 15.0	0.6 (0.6)	0.2(0.1)	0.1	0.1	2.9 (2.2)	2.3(2.1)	6.4	0.7	0.4(0.3)	1.3	0.1	1.2(0.4)
15.0 - 16.0	0.5 (0.5)	0.2(0.3)	0.1	0.0	3.0 (2.3)	2.1 (1.9)	5.8	1.3	0.4(0.3)	1.2	0.1	0.8 (0.1)
16.0 - 18.0	0.5 (0.4)	0.2(0.1)	0.1	0.1	2.9 (2.2)	1.9 (1.7)	6.1	1.5	0.3 (0.3)	1.1	0.7	0.1(0.4)
18.0 - 20.0	0.5 (0.5)	0.2(0.2)	0.1	0.1	2.9 (2.2)	1.8 (1.6)	5.6	1.4	0.4(0.3)	1.4	0.2	0.2 (0.2)
20.0 - 22.0	0.4(0.4)	0.2(0.2)	0.1	0.0	3.0 (2.4)	1.8 (1.6)	3.0	2.2	0.3 (0.3)	0.9	0.6	0.0 (0.0)
22.0 - 25.0	0.4 (0.5)	0.2(0.2)	0.0	0.0	3.1 (2.5)	1.6 (1.5)	2.7	2.1	0.4 (0.3)	1.5	1.3	0.4 (0.4)
25.0 - 30.0	0.5 (0.5)	0.2(0.2)	0.0	0.7	3.1 (2.7)	1.7 (1.5)	1.1	2.3	0.4 (0.4)	1.3	0.5	0.3 (0.2)
30.0 - 50.0	0.3 (0.3)	0.2 (0.2)	0.0	0.3	2.7 (2.2)	1.8 (1.6)	4.5	2.1	0.3 (0.3)	1.2	3.8	0.1 (1.0)

Tag and Probe utilizing Z resonance

